GENOME EDITING IN PLANTS

Vittoria Brambilla University of Milan, Italy

GENEVA, 30 JUNE 2017

Agriculture feeds humans

PLANT BREEDING

- GROWING HUMAN POPULATION
- CLIMATE CHANGE AND DISEASES

PLANT BREEDING:

Makes use of **genetics** to change the traits of plants in order to **produce desired characteristics**

CROPS ARE SUBJECTED TO CONTINUOUS BREEDING TO IMPROVE:

- Crops yield and yield stability
- Resistance to changing environmental conditions
- Resistance to patogens

......

Rice is the main cereal harvested for human consumption

RICE IS THE FOCUS OF EXTENSIVE SCIENTIFIC RESEARCH WORLDWIDE

Rice breeding

1) CROSSING

2) RANDOM MUTAGENESIS

3) NEW BREEDING TECHNOLOGIES or PRECISION BREEDING or *GENOME EDITING*

TIME CONSUMING – UNEXPECTED RESULTS

1) CROSSING

ELITE VARIETY

VARIETY WITH A POSITIVE TRAIT

8-10 YEARS

2) RANDOM MUTAGENESIS

 γ -rays

ELITE VARIETY

Randomly break and mutate the DNA

Chemical compounds

TIME CONSUMING -UNEXPECTED RESULTS

RANDOMLY

MUTATED

ELITE

VARIETY

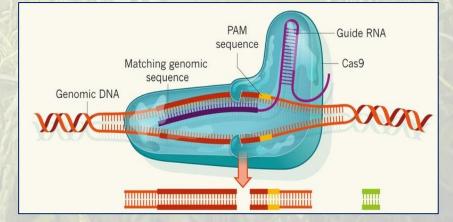
3) NEW BREEDING TECHNOLOGIES or PRECISION BREEDING or *GENOME EDITING*

IMPROVED VARIETY

TechnologyKnowledge

The "ideal breeding" **Fast and precise**

Technology



INVENTION FROM BASIC RESEARCH IN BACTERIA

CRISPR/CAS9 (and subsequent modifications)

- Easy to use
- Precise
- Versatile

Knowledge

- RESEARCH IS WORLDWIDE VERY ADVANCED
- WE KNOW THE MOLECULAR AND GENETIC

RR

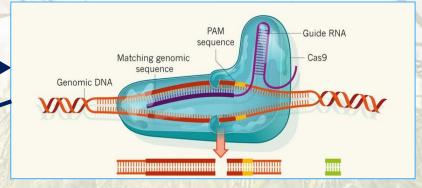
new plant type

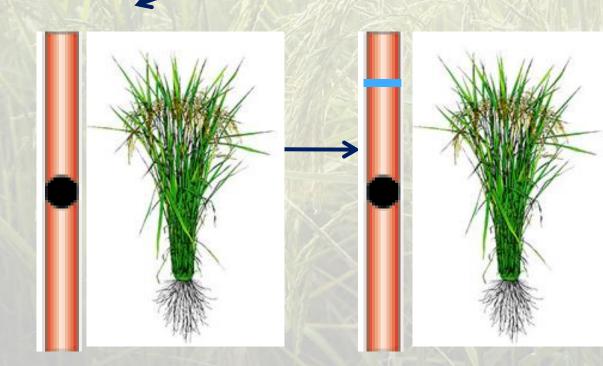
IR-64

matataa

BASES OF MANY TRAITS

oryza ridley


oryza granulata


basmati 370

oryza alta

GENOME EDITING

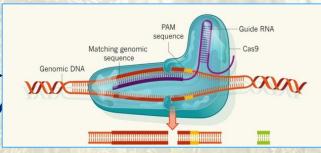
Knowledge from research

VARIETY IMPROVED ONLY FOR THE TRAIT OF INTEREST

RICE FLOWERING

Allows shortening of the cropping season

Important breeding trait for European rice



RICE FLOWERING

WE IDENTIFIED TWO GENES THAT DELAY FLOWERING

	BZIP9	208	ACCAGTAGCCAGCAGCATCAGCCGGGCTCGGGCCTCCTGCGGCAGGGAGCATCACGATG	267	
	BZIP42	250	ATCGCGGGCCAGTCTCAGCCGGCCCTGGGGCTGCAGCGCCAGGGGAGCATCACGATG	306	
ļ	BZIP9	268	CCGCCTGAGCTCAGCAAGAAGACGGTGGACGAGGTGTGGAAGGGGATCCAGGCTGCTCCG	327	
	BZIP42	307	CCTCCGGAGCTGAGAAGAAGACGGTGGATGAAGGTGTGGAAGGGCATCCAGGATGTGCCG	366	
	BZIP9	328	AAGAGGAATGCCGAAAcgggcggcggcggcggcggcggcggcggcggcgAGAGAGGCAG	387	
	BZIP42	367	AAGAGGGGTGCTGAGGAGGGTGGCCGGTGGAGGCGGGAGAGG	411	
	BZIP9	388	CCGACGCTTGGGGAGGTGACGCTCGAGGATTT CCT<mark>GGTCAAAGCTGGGGTTGTCA</mark>CCCAA	447	
	BZIP42	412	CCGACCCTGGGGGAGATGACGCTTGAGGATTT CCT<mark>GGTCAAAGCTGGGGTTGTCA</mark>C	467	
	BZIP9	448	GGATCTCTCAAGGAGCTTAGTGATGTAGGCAATGTGGATCCGGTTGGAAGAGGTGTTACA	507	
	BZIP42	468	GGATCCGAACGATTTGCCAGGAAACATGGATGTGGTAGGGGGGCGCTGCTGCG	519	
	BZIP9	508	GCAACCGGGACTGTGGATCTGGCACCTGGATCACACTGGATAGAGCAGTATAAGCAG	564	

WE USED CRISPR TO INACTIVATE THEM

- FAST: 6 MONTHS
- **100% Efficiency**: all plants recovered had both genes inactivated
- **Specificity:** no off targets were found

RICE TRAITS IMPROVED BY CRISPR

GENES	TRAIT	REFERENCE
OsBADH2	Aroma	Shan et al. (<u>2013</u>)
SWEET1a-1b-11-13	Reisistance to <i>Xantomonas</i> oryzae	Zhou et al. (<u>2014</u>)
Gn1a, GS3, IPA1	Increased yield	Li et al. (<u>2016</u>)
DEP1	Increased yield	Wang et al., 2017
•••••		

EVERY WEEK NEW TRAITS ARE ADDED TO THE LIST!

Genome editing is used to improve several crop species

Mushroom-Yang 2016 Corn-Dupont 2016 Tomato-Nekrasov 2017

Potato-Andresson 2017 Wheat-Liang 2017

"did not detect off-target mutations"

Soy - Demorest 2016

"no off-target mutations are detected in the mutant plants"

Thanks to all the young scientists of the rice lab group at the University of Milan

Fabio Fornara Martina Cerise Micol Aldrovandi Francesca Giaume

Thank you

LITTLE LA CONTRACTOR